Inactivation of mammalian Ero1α is catalysed by specific protein disulfide-isomerases
نویسندگان
چکیده
Disulfide formation within the endoplasmic reticulum is a complex process requiring a disulfide exchange protein such as PDI (protein disulfide-isomerase) and a mechanism to form disulfides de novo. In mammalian cells, the major pathway for de novo disulfide formation involves the enzyme Ero1α (endoplasmic reticulum oxidase 1α) which couples oxidation of thiols to the reduction of molecular oxygen to form hydrogen peroxide (H2O2). Ero1α activity is tightly regulated by a mechanism that requires the formation of regulatory disulfides. These regulatory disulfides are reduced to activate and reform to inactivate the enzyme. To investigate the mechanism of inactivation we analysed regulatory disulfide formation in the presence of various oxidants under controlled oxygen concentration. Neither molecular oxygen nor H2O2 was able to oxidize Ero1α efficiently to form the correct regulatory disulfides. However, specific members of the PDI family, such as PDI or ERp46 (endoplasmic reticulum-resident protein 46), were able to catalyse this process. Further studies showed that both active sites of PDI contribute to the formation of regulatory disulfides in Ero1α and that the PDI substrate-binding domain is crucial to allow electron transfer between the two enzymes. The results of the present study demonstrate a simple feedback mechanism of re-gulation of mammalian Ero1α involving its primary substrate.
منابع مشابه
Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation.
Disulfide bond formation in the endoplasmic reticulum by the sulfhydryl oxidase Ero1 family is thought to be accompanied by the concomitant formation of hydrogen peroxide. Since secretory cells can make substantial amounts of proteins that contain disulfide bonds, the production of this reactive oxygen species could have potentially lethal consequences. Here, we show that two human proteins, GP...
متن کاملThe endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation.
In eukaryotes, disulfide bonds are formed in the endoplasmic reticulum, facilitated by the Ero1 (endoplasmic reticulum oxidoreductin 1) oxidase/PDI (protein disulfide-isomerase) system. Mammals have two ERO1 genes, encoding Ero1α and Ero1β proteins. Ero1β is constitutively expressed in professional secretory tissues and induced during the unfolded protein response. In the present work, we show ...
متن کاملSynergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding
The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of intera...
متن کاملCysteines 208 and 241 in Ero1α are required for maximal catalytic turnover
Endoplasmic reticulum (ER) oxidoreductin 1α (Ero1α) is a disulfide producer in the ER of mammalian cells. Besides four catalytic cysteines (Cys(94), Cys(99), Cys(394), Cys(397)), Ero1α harbors four regulatory cysteines (Cys(104), Cys(131), Cys(208), Cys(241)). These cysteines mediate the formation of inhibitory intramolecular disulfide bonds, which adapt the activation state of the enzyme to th...
متن کاملBiochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262
In the ER (endoplasmic reticulum) of human cells, disulfide bonds are predominantly generated by the two isoforms of Ero1 (ER oxidoreductin-1): Ero1α and Ero1β. The activity of Ero1α is tightly regulated through the formation of intramolecular disulfide bonds to help ensure balanced ER redox conditions. Ero1β is less tightly regulated, but the molecular details underlying control of activity ar...
متن کامل